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1. Introduction 

It is well established that the quasi-static ion approximation in spectral line Stark broadening 

calculations can lead to discrepancies with experimental data near line center [1]. A successful 

and practical approach to incorporate particle dynamics is a stochastic model microfield 

description of the plasma [2,3] (respectively MMM and BID hereafter). These models obtain 

exact solutions for the line profile assuming an idealized stochastic process and conserve 

important properties of the real problem by adjusting free parameters present in the theory. 

A related approach is the frequency-fluctuation model (FFM) [4]. This model assumes a 

Markovian process for the fluctuations of the emitted or absorbed radiation. Specifically, the 

plasma fluctuations cause an exchange between the quasi-static radiative channels. In addition, 

the FFM permits fast calculations of spectral line profiles for large problems. 

The purpose here is to examine the behavior of the FFM and BID formulations when applied 

to the Lyman-α line of hydrogenic ions. This yields relatively simple expressions for the line 

profiles and analytic results for known limits of the general spectral line broadening theory. Such 

comparisons can identify limitations of the stochastic models. 

2. Radiator-Plasma System 

The system is idealized to simplify the analysis. Hence, the plasma is assumed isotropic and 

is represented by a single perturbing species. The radiator-perturber interaction assumes the 

dipole approximation [5] and only internal radiator states with the same principal quantum 

number are allowed to interact. Finally, it is stressed that there are important differences between 

neutral and charged radiators [2,3] and the present discussion considers the latter. 

The Lyman-α line is the radiative transition from the 2p to 1s orbitals in a one-electron ion 

where   

€ 

n is the usual notation for principal and orbital quantum numbers. The single lower state 

plus degenerate upper states (fine structure is neglected) are labeled 

 

€ 

0 = 1s,m = 0
1 = 2s,m = 0
2 = 2p,m = 0
3 = 2p,m = +1
4 = 2p,m = −1

 (2.1) 

A vector in ‘line space’ represents the dipole operator for the radiative transitions 
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€ 

d = 0,1,1,1( )T  (2.2) 

where the superscript T denotes transpose. 

In a coordinate system where the Stark field   

€ 

 
ε  defines the z-axis the only non-zero matrix 

element of the radiator-perturber interaction is given by 

   

€ 

1
 
d ⋅  ε 2 = Bε  (2.3) 

Although 

€ 

B is well known, it is not required after introducing the dimensionless variables 

 

€ 

β = ε ε o
x = Δω Bε o

 (2.4) 

where 

€ 

ε o  is a characteristic field strength and 

€ 

Δω  is the photon energy measured from line 

center. In dimensionless variables, 

 

€ 

dεP ε( ) →dβP β( )
dωL Δω( ) →dxL x( )

 (2.5) 

where 

€ 

P ε( ) is the probability of finding an electric field magnitude 

€ 

ε  at the radiator due to the 

plasma and 

€ 

L Δω( ) is the line shape function [5]. The dimensionless variables are used hereafter. 

3. Static profile 

The area normalized Lyman-α line profile in the quasi-static approximation is given by [5] 

 

€ 

LQS x( ) = πdT ⋅ d( )−1 Im dT ⋅ R x;β( )d
β
 (3.1) 

where 

€ 

uT ⋅ v  denotes a vector dot product in line space and 

 

€ 

f β( )
β

= dβP β( ) f β( )
o

∞

∫  (3.2) 

defines an average over the field magnitude. As usual the angle integration was simplified by 

letting the electric field define the z-axis (see Appendix A). The resolvent in the present 

approximations reduces to the 4x4 matrix [5] 

 

€ 

R x;β( ) =

x − iγ
x − iγ( )2 − β2

β

x − iγ( )2 − β2
0 0

β

x − iγ( )2 − β2
x − iγ

x − iγ( )2 − β2
0 0

0 0 x − iγ( )−1 0
0 0 0 x − iγ( )−1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 (3.3) 
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where 

€ 

γ  is a homogenous width assigned to all line components and made to vanish at the end of 

the calculations. Substituting the transition dipole and resolvent matrix into Eq. (3.1) yields 

 

€ 

LQS x( ) =
1
3π

2γ
x 2 + γ 2

+ Im x − iγ
x − iγ( )2 − β2

β

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

=
γ → 0

1
6
4δ x( ) + P x( ){ }

 (3.4) 

This is a well-known result where the first term is the contribution from the unshifted 

€ 

m = ±1 

states and the second is from the shifted 

€ 

m = 0  states. 

4. FFM profile 

The Lyman-α line profile from FFM that accounts for particle dynamics is given by [4] 

 

€ 

LFFM x( ) = πdT ⋅ d( )−1 Im dT ⋅ I − iν o R x;β( )
β[ ]

−1

R x;β( )
β
d

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (4.1) 

where 

€ 

νo  is a free parameter and represents the frequency fluctuation rate. Note that 

€ 

R β  

appearing in this expression has the Stark field defining the z-axis and the average is over the 

field magnitude. Since the resolvent has 3 diagonal blocks, the FFM profile has independent 

contributions from the shifted and unshifted components that are considered separately below. 

4.1 Unshifted components, 

€ 

m = ±1 

The profile contribution from the unshifted components is given by 

 

€ 

LFFM
m =1( ) x( ) =

2
3π
Im 1− iν o

x − iγ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1
1

x − iγ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

=
γ→ 0

2
3

ν o π
x 2 +ν o

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 (4.1.1) 

Clearly, the unshifted components simply have their line width modified by the fluctuation rate. 

Note that in other stochastic models [2,3] the resolvent takes the form 

€ 

R x( ) →R x + iν o( ), but not 

in FFM. This is discussed further in Appendix B. 

4.2 Shifted components, 

€ 

m = 0  

The shifted components involve a 2 state system 
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€ 

LFFM
m=0( ) x( ) =

1
3π
Im 0 1( )

1 0
0 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − iν oU

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1

U
0
1
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

=
1
3π
Im

U11 − iν o U11
2 −U12

2( )
1− iν o U11 −U12( )[ ] 1− iν o U11 +U12( )[ ]

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

 (4.2.1) 

where 

€ 

U  is the 2x2 diagonal block resolvent corresponding to the 

€ 

m = 0 states in Eq. (3.3) 

averaged over the field magnitude. Its matrix elements are given by 

 

€ 

U11 x( ) = fo x( ) + i π
2
P x( ) (4.2.2) 

 

€ 

U12 x( ) = f1 x( ) ± i π
2
P x( )

x > 0
x < 0
⎧ 
⎨ 
⎩ 

 (4.2.3) 

and 

 

€ 

fn x( ) =
1
2

x − β
x − β( )2 + γ 2

±
x + β

x + β( )2 + γ 2
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

β

n = 0
n =1

⎧ 
⎨ 
⎩ 

 (4.2.5) 

These results are derived in Appendix C. 

4.3 Limits 

The small 

€ 

νo  limit for the FFM profile is readily obtained from Eqs. (4.1.1), (4.2.1) and 

(4.2.2) to give 

 

€ 

Lim
ν o→ 0

LFFM x( ) = LQS x( )  (4.3.1) 

and the FFM profile reduces to the static result in Section 3. 

It is known that the FFM does not reproduce the impact limit near line center [4]. At line 

center the large modulation frequency limit of the FFM profile is obtained from Eqs. (4.1.1) and 

(4.2.1) leading to 

 

€ 

Lim
ν o→∞

LFFM 0( ) =
1
πν o

 (4.3.2) 

so that the FFM line shape broadens with increasing 

€ 

νo . This is not the expected line narrowing 

behavior associated with the rapid fluctuation limit [4,6]. 

In the far line wings the FFM profile becomes (see Appendix C) 

 

€ 

Lim
x →∞

LFFM x( ) =
νo
π x 2

 (4.3.3) 
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Clearly, the Lyman-α line FFM profile does not reduce to the quasi-static limit in the far wings. 

Instead, the FFM profile has an inverse square decay with detuning frequency. 

5. BID profile 

The BID formulation leads to the Lyman-α line profile [3] 

 
  

€ 

LBID x( ) = − πdT ⋅ d( )−1 Im dT ⋅ 1− iν M x + iν;
 
β ( )  

β 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

−1

M ω + iν;
 
β ( )  

β 
d

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
 (5.1) 

with 

 

€ 

ν x( ) =
νo

1+ ixτ
 (5.2) 

This two-parameter representation preserves the fundamental symmetries resulting from rotation, 

translation, time reversal, and stationarity. The free parameters 

€ 

νo  and 

€ 

τ  were defined by the 

low- and high-frequency limits of the momentum auto correlation function. It is stressed that 

  

€ 

  
β  represents a 3-dimensional average over the field and 

€ 

M  is the resolvent operator with the 

Stark field in an arbitrary direction (see Appendix A). 

In the no lower state interaction approximation (see Appendix A), 

 

  

€ 

Mm, ʹ′  ʹ′ m x + iν;
 
β ( )  

β 
=
δ ʹ′  δ ʹ′ m m

2 +1( )
Rµ,µ x + iν;β( )

β
µ

∑

= δ ʹ′  δ ʹ′ m mG x + iν( )
 (5.3) 

defining   

€ 

G . Substitution of the transition dipole and Eq. (5.3) into Eq. (5.1) yields 

 

€ 

LBID x( ) = −π−1 Im G1 x + iν( )
1− iνG1 x + iν( )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (5.4) 

with 

 

€ 

G1 z( ) =
1
3
2
z

+
z

z2 − β2 β

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 (5.5) 

obtained from the definition in Eq. (5.3) and Eq. (3.3) with 

€ 

x →z and 

€ 

γ = 0 . 

5.1 Limits 

The small 

€ 

ν  limit of the BID profile readily follows from Eq. (5.1) together with Eq. (5.5), 

 

€ 

Lim
ν → 0

LBID x( ) = −π−1Lim
ν → 0

ImG1 x + iν( )

= LQS x( )
 (5.1.1) 

and reduces to the static result in Section 3. 
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In the far line wing consider the limit 

 

€ 

Lim
xτ→∞

LBID x( ) = −π−1 ImG1 x( ) 1+
2ν oReG1 x( )

xτ
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= LQS x( ) +O 1 xτ( )
 (5.1.2) 

Thus, 

€ 

LBID x( )  approaches the static limit in the far wing 

€ 

xτ >>ν o( ) . 

It was previously shown that BID recovers the impact limit near line center for the Lyman-α 

line [7]. A more general discussion of the impact limit is given in Appendix D. In addition, at line 

center the fast fluctuating limit yields 

 

€ 

Lim
ν o→∞

ReG1 iνo( ) =O x( )  (5.1.3) 

and 

 

€ 

Lim
ν o→∞

ImG1 iνo( ) = −
1
νo

1−
β2

β

3νo
2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 (5.1.4) 

Substituting these results into Eq. (5.4) leads to 

 

€ 

Lim
ν o→∞

LBID 0( ) =
3νo

π β2
β

 (5.1.5) 

which is the expected line narrowing behavior in the rapid fluctuation limit [6]. 

 6. Numerical results 

Numerical results for the Lyman-α profiles from FFM and BID are provided for several 

€ 

νo  

values that graphically display the behavior of the two formalisms. All the profiles are symmetric 

about line center; thus, only the 

€ 

x ≥ 0 portions are presented. 

6.1 Microfield distribution 

The calculations use a microfield distribution of the form [8] 

 

€ 

P β( ) = A β2e− β

1+Cβ9 2
 (6.1.1) 

that has the correct functional behavior for the small and large field limits for the field 

distribution at a charged point. Specifically, the following fit was used 

 

€ 

A = 2.807
C = 0.5

 (6.1.1) 
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giving a peak at 

€ 

β ≈1 typical of plasma conditions in many applications. Although not strictly 

necessary the fit simplifies the numerical integrations and is sufficient for the present purpose. 

6.2 Line profiles 

Profile calculations for the two models are displayed in Figs. 1 and 2 for several values of the 

free parameter. Since 

€ 

τ  is typically small [3,7], the present BID calculations assumed 

€ 

τ = 0, 

which does not affect the results except in the far wing limit. It follows from the figures that both 

models approach the static results for small 

€ 

νo. For increasing 

€ 

νo , however, the FFM does not 

reproduce the fast fluctuating limit [8]. Instead, the FFM profile becomes broader with 

increasing 

€ 

νo . On the other hand, the BID model does show the expected line narrowing 

behavior associated with the fast fluctuation limit. 

7. Conclusions 

Stochastic models of spectral line Stark broadening are reasonably successful in describing 

particle dynamics [2-4]. Two such models were applied to the Lyman-α line. The resulting 

profiles yield analytic expressions in several limits that are compared to known results of the 

general spectral line broadening theory. 

It was found that the frequency-fluctuation model (FFM) [4] does not reproduce the impact 

limit near line center or display the line narrowing associated with the fast fluctuating limit [4,6]. 

Furthermore, the FFM does not approach the static limit in the far line wing. In fact, in these 

limits the FFM profile for the Lyman-α line behaves as Lorentzian with width defined by the 

frequency fluctuation rate. In contrast, the BID model [3] reproduces the impact limit near line 

center, displays the expected behavior in the rapid fluctuation limit, and reduces to the static 

profile in the far line wings. 

 

Acknowledgments: This work performed under the auspices of the U.S. Department of Energy by 

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 



 9 

Appendix A: Integration over field direction 

The angle average is performed using well-known techniques [9,10]. It is advantageous for 

the Stark field to define the z-axis; thus, transform the internal radiator states to the chosen frame 

by a rotation 

€ 

Ω ξ1,ξ2,ξ3( ) parametrized by the Euler angles 

€ 

ξ1, 

€ 

ξ2 , and 

€ 

ξ3  [11]. Since the field 

occurs at random directions, the angle integration is obtained by averaging over all rotations. In 

the absence of external fields, setting 

€ 

ξ1 = φ  and 

€ 

ξ2 = θ , the azimuthal and polar angles of the 

spherical coordinates respectively, makes 

€ 

ξ3  arbitrary merely introducing a phase. Hence, the 

field vectorial integration of the resolvent in double atom notation [5,9,10] is given by 

 

  

€ 

d ε 
4π

P ε( )∫ αβ M ʹ′ α ʹ′ β = dεP ε( ) 1
8π 2 dξ3 dφ dcosθ αβD−1DMD−1D ʹ′ α ʹ′ β 

−1

1

∫
0

2π

∫
0

2π

∫
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 0

∞

∫

= Ram1bm3 , ʹ′ a m2 ʹ′ b m4 ε
dΩDm1mα

jα( )*Dm3m β

jβ( ) Dm2m ʹ′ α 

j ʹ′ α ( ) Dm4m ʹ′ β 

j ʹ′ β ( )*∫⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ m2m4

∑
m1m3

∑

= 2 j +1( )Kαβ
jm( )K ʹ′ α ʹ′ β 

jm( )

jm ʹ′ m 
∑ Kam1bm3

j ʹ′ m ( ) Ram1bm3 , ʹ′ a m2 ʹ′ b m4 ε
K ʹ′ a m2 ʹ′ b m4

j ʹ′ m ( )

m2m4

∑
m1m3

∑

 (A.1) 

Here, 

€ 

M  is the resolvent with the field in arbitrary direction, * denotes complex conjugate, the 

shorthand notation 

 

€ 

Kαβ
jq( ) = −1( ) jα −mα

jα jβ j
mα −mβ −q
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (A.2) 

involving the Wigner 3-j symbol was introduced, 

   

€ 

R ω;ε( ) =D Ω( )M ω;
 
ε ( )D−1 Ω( ) (A.3) 

is the rotated resolvent operator with z-axis along the Stark field, and 

 

€ 
€ 

f ε( )
ε

= dε P ε( ) f ε( )
o

∞

∫  (A.4) 

denotes the average over the field magnitude. The radiator internal states are described by 

€ 

α = Γα jαmα  with energy   

€ 

ωα , 

€ 

β = Γβ jβmβ  with energy   

€ 

ωβ , and so on, where 

€ 

Γjm  has 

total angular momentum 

€ 

j , magnetic quantum number 

€ 

m , and 

€ 

Γ represents any additional 

quantum numbers necessary to complete the description. In addition, the notation 

€ 

α = amα  

with 

€ 

a = Γα jα , 

€ 

β = bmβ  with 

€ 

b = Γβ jβ , was also introduced. The results in Eq. (A.1) also used 
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€ 

αβD ʹ′ α ʹ′ β = α D ʹ′ α ⊗ β D ʹ′ β 
*

= δΓ ʹ′ α Γα
δ j ʹ′ α jα

δΓ ʹ′ β Γβ
δ j ʹ′ β j β

Dmαm ʹ′ α 

jα( ) Dm βm ʹ′ β 

j β( )*  (A.5) 

with 

€ 

⊗ the direct or Kronecker product, 

 

€ 

ʹ′ Γ ʹ′ j ʹ′ m D Γjm = δ ʹ′ Γ Γδ ʹ′ j jD ʹ′ m m
j( )  (A.6) 

plus the symmetry, product, and integration properties of the rotation matrices [11]. 

A.1 Quasi-static line shape function 

The quasi-static line shape function is given by [5] 

 

€   

€ 

IQS ω( ) = −π −1 ImTr
 
d ⋅ M ω;

 
ε ( )  

ε 
ρ
 
d { }

= −π −1 Im −1( )q dβα
−q( ) Mαβ , ʹ′ α ʹ′ β ω;

 
ε ( )  

ε 
ρ ʹ′ α d ʹ′ α ʹ′ β 

q( )

ʹ′ α ʹ′ β 

∑
αβ

∑
q
∑

= −π −1 Im dαβ
q( ) Rαβ , ʹ′ α ʹ′ β ω;ε( )

ε
ρ ʹ′ α d ʹ′ α ʹ′ β 

q( )

ʹ′ α ʹ′ β 

∑
αβ

∑
q
∑

= −π −1 ImTr
 
d ⋅ R ω;ε( )

ε
ρ
 
d { }

 (A.1.1) 

where 

€ 

Tr  denotes a trace over internal radiator states and the density matrix is assumed diagonal 

with elements 

€ 

ρα  the occupation of state 

€ 

α . These results were obtained by using the Winger-

Eckart theorem [11] for the 

€ 

qth  spherical component of the dipole operator, 

 

€ 

dαβ
q( ) = −1( )q dβα

−q( )

= Kαβ
1q( )Sab

1 2
 (A.1.2) 

with 

€ 

Sab
1 2  the reduced matrix element, together with the expression for the vectorial average in 

Eq. (A.1) and the summation properties of the Wigner 3-j symbols [11]. The last line of 

Eq. (A.1.1) is the usual starting point for calculations in the quasi-static approximation [5]. 

A.2 No lower state interaction 

A common approximation is to neglect lower state broadening (appropriate for the Lyman-α 

line). Assuming 

€ 

α 's and 

€ 

β's represent upper and lower states respectively, then for isotropic 

plasmas the radiator Hamiltonian is rotationally invariant and independent of the magnetic 

quantum numbers so that 

 

€ 

Rαβ , ʹ′ α ʹ′ β →δ ʹ′ β βRα ʹ′ α 
b( )  (A.2.1) 

With this approximation the field-averaged resolvent in Eq. (A.1) simplifies to 
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€ 

Mαβ , ʹ′ α ʹ′ β ω;
 
ε ( )  

ε 
→δ ʹ′ β β

δ jα j ʹ′ α 
δmα m ʹ′ α 

2 jα +1( )
Ram, ʹ′ a m

b( ) ω;ε( )
ε

m
∑  (A.2.2) 

reproducing earlier results [3]. 

Appendix B: FFM unshifted components (‘incorrect’ version) 

Consider 

€ 

R x;β( ) →R x + iν;β( ) in Eq. (3.1). Then instead of Eq. (3.1.1) get for the unshifted 

components, 

 

€ 

LFFM
m =1( ) x( ) =

? 2
3π
Im 1− iν

x + iν − iγ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1 1
x + iν − iγ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

=
γ→ 0

2
3
δ x( )

 (B.1) 

and the unshifted components do not experience dynamic effects! 

Appendix C: The 

€ 

U  matrix 

The 

€ 

U  matrix is the field averaged block diagonal resolvent for the 

€ 

m = 0 states in Eq. (3.3), 

 

€ 

U x( ) =
Fo x( ) F1 x( )
F1 x( ) Fo x( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (C.1) 

where 

 

€ 

Fn x( ) =
1
2

1
x − iγ − β

±
1

x − iγ + β
β

n = 0
n =1

⎧ 
⎨ 
⎩ 

 (C.2) 

Straightforward manipulations give for the imaginary parts 

 

€ 

ImFo x( ) =
γ
2
Im 1

x − β( )2 +γ 2
+

1
x + β( )2 +γ 2

β

=
γ → 0

π
2
P x( )

 (C.3) 

and similarly 

 

€ 

ImF1 x( ) =
γ → 0

±
π
2
P x( )

x > 0
x < 0
⎧ 
⎨ 
⎩ 

 (C.4) 

For the real parts get 

 

€ 

ReFn x( ) = fn x( )

=
1
2

x − β
x − β( )2 + γ 2

±
x + β

x + β( )2 + γ 2
β

n = 0
n =1

⎧ 
⎨ 
⎩ 

 (C.5) 
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The small and large 

€ 

x  limits are readily obtained 

 

€ 

Lim
x→ 0

fn x( ) = −
β2−n

xn−1
 (C.6) 

 

€ 

Lim
x →∞

fn x( ) =
βn

xn+1  (C.7) 

for 

€ 

n = 0,1. 

Appendix D: Impact limit of BID profile 

It is desirable for the stochastic description to recover the impact limit near line center 

whenever 

€ 

ν  is large (fast fluctuations). Begin by writing the BID profile in the general form [3] 

 

€ 

  

€ 

LBID ω( ) = −π −1 ImTr
 
d ⋅ I − iν Δω( ) M ω;

 
ε ( )  

ε [ ]
−1

M ω;
 
ε ( )  

ε 
ρ
 
d 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (D.1) 

where 

€ 

Tr  denotes a trace over internal radiator states, 

€ 

I  is the identity operator, 

€ 

ρ  is the density 

matrix for the radiator-plasma system, and the resolvent is given by 

   

€ 

M ω;
 
ε ( ) = A ω( ) − LR

 
ε ( ){ }

−1
 (D.2) 

with 

 

€ 

A ω( ) = Δω + iν ω( ) (D.3) 

   

€ 

Δω = −1 H,[ ] (D.4) 

   

€ 

LR
 
ε ( ) = −1

 
ε ⋅
 
d ,[ ]  (D.5) 

where 

€ 

H  is the Hamiltonian for the radiator internal states,   

€ 

LR
 
ε ( )  is the radiator dipole 

interaction with the quasi-static Stark field, and   

€ 

,[ ] denotes a commutator. 

D.1 Second-order expansion 

Near line center the broadening is described by weak interactions and is amenable to 

perturbation theory. To proceed, the profile in Eq. (D.1) can be rewritten to facilitate an 

expansion of the denominator in powers of   

€ 

LR
 
ε ( ) , 

 
  

€ 

LBID ω( ) = −π −1 ImTr
 
d ⋅ M ω;

 
ε ( )  

ε 

−1
− iν Δω( )I[ ]

−1

ρ
 
d 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (D.1.1) 

Using Eqs. (D.2) – (D.5) write (suppressing the 

€ 

ω  dependence for clarity) 

 
  

€ 

M  ε ( )  
ε 

= I + A−1 LR
 
ε ( )A−1LR

 
ε ( )  

ε 
+{ }A−1 (D.1.2) 

The inverse of Eq. (D.1.2) is then given by 
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€ 

M  ε ( )  
ε 

−1
= A − LR

 
ε ( )A−1LR

 
ε ( )  

ε 
+ (D.1.3) 

Substituting Eq. (D.1.3) into (D.1.1) yields 

 
  

€ 

LBID Δω ≈ 0( ) = −π −1 ImTr
 
d ⋅ Δω + i LR

 
ε ( )ν −1LR

 
ε ( )  

ε 
+[ ]

−1
ρ
 
d 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (D.1.4) 

in the large 

€ 

ν  limit. 

Now consider the matrix elements of the second-order expression with 

€ 

νo  a constant, 

 

  

€ 

αβ LR
 
ε ( )ν o

−1LR
 
ε ( )  

ε 
ʹ′ α ʹ′ β =

ε 2
ε
ν o
−1

32
 
d αλ ⋅
 
d λ ʹ′ α δβ ʹ′ β +δα ʹ′ α 

 
d λβ ⋅
 
d ʹ′ β λ{ }

λ

∑

−
 
d α ʹ′ α ⋅

 
d ʹ′ β β −

 
d α ʹ′ α ⋅

 
d ʹ′ β β

 (D.1.5) 

It is emphasized that the vectorial average plays an important role leading to the results in 

Eq. (D.1.4). Specifically, the linear term in the Stark field vanish in Eq. (D.1.2) and 

 
  

€ 

 
d ⋅  ε ( )

 
d ⋅  ε ( )  

ε 
=
ε 2

ε

3
 
d ⋅
 
d  (D.1.6) 

valid for isotropic plasmas. 

D.2 Free parameter choice 

In earlier work the free parameter was chosen as a scalar of the form [3] 

 

€ 

ν ω( ) =
νo

1+ iωτ
 (D.2.1) 

This two-parameter representation preserves the fundamental symmetries resulting from rotation, 

translation, time reversal, and stationarity. The free parameters 

€ 

νo  and 

€ 

τ  were defined by the 

low- and high-frequency limits of the momentum auto correlation function. 

Now consider the choice 

 

€ 

ν o
−1 = −

4nQ2e2

ε 2
ε

2π
T

mRmP

mR +mP

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1 2

iG Δω = 0( )  (D.2.2) 

where 

€ 

Qe , 

€ 

n, and 

€ 

mP  are the perturber charge, mass, and number density, respectively, 

€ 

mR  is 

the radiator mass, and 

€ 

T  is the plasma temperature in energy units. The complex function 

€ 

G Δω( )  is a thermal average and trace over the perturber wavefunctions. In the dipole 

approximation 

€ 

ImG Δω( )  is given by the thermally averaged bremsstrahlung Gaunt factor [12]. 

Thus, 

€ 

ImG 0( ) = Λ  with 

€ 

Λ the Coulomb logarithm [13]. The choice in Eq. (D.2.2) is therefore an 

approximation to the diffusion constant [7,14] and consistent with the earlier choice for 

€ 

νo  [3,7]. 
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The choice in Eq. (D.2.2) leads to 

 

  

€ 

αβ LR
 
ε ( )ν o

−1LR
 
ε ( )  

ε 
ʹ′ α ʹ′ β →−

4nQ2e2

32
2π
T

mR mP

mR + mP

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1 2

δβ ʹ′ β 

 
d α ʹ′ ʹ′ α ⋅

 
d ʹ′ ʹ′ α ʹ′ α 

ʹ′ ʹ′ α 

∑
⎧ 
⎨ 
⎩ 

+δα ʹ′ α 

 
d ʹ′ β ʹ′ ʹ′ β ⋅

 
d ʹ′ ʹ′ β β

ʹ′ ʹ′ β 

∑ − 2
 
d α ʹ′ α ⋅

 
d ʹ′ β β

⎫ 
⎬ 
⎭ 
iG Δω = 0( )

 (D.2.3) 

which approximately reproduces the second order-order impact limit [15]. Note that the result in 

Ref. 15 is for electrons while the expression in Eq. (D.2.3) accounts for arbitrary perturber-

radiator reduced mass and perturber charge. 

The result in Eq. (D.2.3) does not exactly reproduce the second-order impact limit unless the 

energy spread of the initial and final level manifolds is less than   

€ 

~ ω p  with 

 

€ 

ω p
2 =

4πQ2e2n
mP

 (D.2.4) 

the plasma frequency. That is, 

€ 

ImG ω( ) is nearly constant for 

€ 

ω ≤ω p  (assumes   

€ 

ω p << T  so 

that the detailed balance correction is negligible [12]). Hence, near line center nearly degenerate 

initial and final levels yields for the arguments of 

€ 

G ω( ) in the second-order dynamic term [15] 

 

€ 

G ω ʹ′ ʹ′ α −ωα( ) ≈G ω ʹ′ α −ωα( ) ≈G ω ʹ′ β −ωβ( ) ≈G ω ʹ′ ʹ′ β −ωβ( ) ≈G 0( )  (D.2.5) 

in agreement with Eq. (D.2.3). The analysis above also assumes 

€ 

Δωτ <<1 near line center [3]. 
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Fig. 1 The static (dash) and FFM profiles for the Lyman-α line in dimensionless units for several 

values of 

€ 

ν  labeled in the figure. 

 
Fig. 2 The static (dash) and FFM profiles for the Lyman-α line in dimensionless units for several 

values of 

€ 

ν  labeled in the figure. 


